Conserved Keratin Gene Clusters in Ancient Fish: an Evolutionary Seed for Terrestrial Adaptation

Author:

Kimura YukiORCID,Nikaido MasatoORCID

Abstract

AbstractType I and type II keratins are subgroups of intermediate filament proteins that provide toughness to the epidermis and protect it from water loss. In terrestrial vertebrates, the keratin genes form two major clusters, clusters 1 and 2, each of which is dominated by type I and II keratin genes. By contrast, such clusters are not observed in teleost fish. Although the diversification of keratins is believed to have made a substantial contribution to terrestrial adaptation, its evolutionary process has not been clarified. Here, we performed a comprehensive genomic survey of the keratin genes of a broad range of vertebrates. As a result, we found that ancient fish lineages such as elephant shark, reedfish, spotted gar, and coelacanth share both keratin gene clusters. We also discovered an expansion of keratin genes that form a novel subcluster in reedfish. Syntenic and phylogenetic analyses revealed that two pairs of krt18/krt8 keratin genes were shared among all vertebrates, thus implying that they encode ancestral type I and II keratin protein sets. We further revealed that distinct keratin gene subclusters, which show specific expressions in the epidermis of adult amphibians, stemmed from canonical keratin genes in non-terrestrial ancestors. Molecular evolutionary analyses suggested that the selective constraints were relaxed in the adult epidermal subclusters of amphibians as well as the novel subcluster of reedfish. The results of the present study represent the process of diversification of keratins through a series of gene duplications that could have facilitated the terrestrial adaptation of vertebrates.HighlightsTwo major keratin clusters are conserved from sharks to terrestrial vertebrates.Adult epidermis-specific keratins in amphibians stem from the two major clusters.A novel keratin gene subcluster was found in reedfish.Ancestral krt18/krt8 gene sets were found in all vertebrates.Functional diversification signatures were found in reedfish and amphibian keratins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3