Viral manipulation of mechanoresponsive signaling disassembles processing bodies

Author:

Castle Elizabeth L.,Robinson Carolyn-Ann,Douglas Pauline,Rinker Kristina D.,Corcoran Jennifer A.ORCID

Abstract

AbstractProcessing bodies (PBs) are ribonucleoprotein granules that suppress cytokine mRNA translation that are targeted for disassembly by many viruses. Kaposi’s sarcoma-associated herpesvirus is the etiological agent of the inflammatory endothelial cancer, Kaposi’s sarcoma, and a PB-regulating virus. The virus encodes Kaposin B (KapB), which induces actin stress fibres (SFs) and cell spindling as well as PB disassembly. We now show that KapB-mediated PB disassembly requires actin rearrangements, RhoA effectors and the mechanoresponsive transcription activator, YAP. Moreover, ectopic expression of active YAP or exposure of ECs to mechanical forces caused PB disassembly in the absence of KapB and mechanoresponsive PB disassembly also required YAP. Using the viral protein KapB, we identified a new consequence of the exposure of cells to mechanical forces that alter actin dynamics and activate YAP, namely the disassembly of PBs.ImportanceFor the first time, we demonstrate that processing bodies (PBs), cytoplasmic sites of RNA decay, are regulated by mechanical signaling events that alter actin dynamics and that this requires the mechanoresponsive transcription factor, YAP. Using the overexpression of a viral protein called KapB, known previously to mediate PB disassembly, we show that actin stress fibers (SFs) and the mechanoresponsive transcription factor, YAP, are required for PB loss. We also show that other established mechanical signals (shear stress or stiff extracellular matrix) that lead to the formation of SFs and activate YAP also cause PB disassembly. This is important because it means that KapB activates, from the inside out, a pathway that links cell shape to post-transcriptional gene regulation via cytoplasmic PBs.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3