Genetic variation associated with PPO-inhibiting herbicide tolerance in sorghum

Author:

Adhikari PragyaORCID,Goodrich Emma,Fernandes Samuel B.ORCID,Lipka Alexander E.,Tranel Patrick,Brown Patrick,Jamann Tiffany M.ORCID

Abstract

AbstractHerbicide application is crucial for weed management in most crop production systems, but for sorghum herbicide options are limited. Sorghum is sensitive to residual protoporphyrinogen oxidase (PPO)- inhibiting herbicides, such as fomesafen, and a long re-entry period is required before sorghum can be planted after its application. Improving sorghum for tolerance to such residual herbicides would allow for increased sorghum production and the expansion of herbicide options for growers. To investigate the underlying mechanism of tolerance to residual fomesafen, a genome-wide association mapping study was conducted using the sorghum biomass panel (SBP) and field-collected data, and a greenhouse assay was developed to confirm the field phenotypes. A total of 26 significant SNPs (FDR<0.05), spanning a 215.3 kb region, were detected on chromosome 3. The ten most significant SNPs included two in genic regions (Sobic.003G136800, and Sobic.003G136900) and eight SNPs in the intergenic region encompassing the genes Sobic.003G136700, Sobic.003G136800, Sobic.003G137000, Sobic.003G136900, and Sobic.003G137100. The gene Sobic.003G137100 (PPXI), which encodes the PPO1 enzyme, one of the targets of PPO-inhibiting herbicides, was located 12kb downstream of the significant SNP S03_13152838. We found that PPXI is highly conserved in sorghum and expression does not significantly differ between tolerant and sensitive sorghum lines. Our results suggest that PPXI most likely does not underlie the observed herbicide tolerance. Instead, the mechanism underlying herbicide tolerance in the SBP is likely metabolism-based resistance, possibly regulated by the action of multiple genes. Further research is necessary to confirm candidate genes and their functions.

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. Weed response to agronomic practices and herbicide strategies in grain sorghum;Agronomy Journal,2017

2. Barber T , Scott B , Norsworthy JK . Weed control in grain sorghum. Arkansas Grain Sorghum Production Handbook. 2015;Chapter 8:1-14.

3. Origins and structure of chloroplastic and mitochondrial plant protoporphyrinogen oxidases: implications for the evolution of herbicide resistance;Pest management science,2018

4. Carryover of Common Corn and Soybean Herbicides to Various Cover Crop Species;Weed Technology,2017

5. Resistance to PPO-inhibiting herbicide in Palmer amaranth from Arkansas;Pest management science,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3