Assessment of Efficacy and Mechanism of Resistance to Soil-Applied PPO Inhibitors in Amaranthus palmeri

Author:

Rangani Gulab1ORCID,Porri Aimone2,Salas-Perez Reiofeli A.1,Lerchl Jens2,Karaikal Srikanth Kumar1,Velásquez Juan Camilo1ORCID,Roma-Burgos Nilda1ORCID

Affiliation:

1. Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704, USA

2. BASF SE, Agricultural Research Station, 67117 Limburgerhof, Germany

Abstract

Resistance to protoporphyrinogen oxidase (PPO) inhibitors in Palmer amaranth is a major concern, given the high selection pressure and increasing number of populations with reduced sensitivity to PPO herbicides in the US. We evaluated the effect of five soil-applied herbicides on Palmer amaranth (Amaranthus palmeri S. Wats.) populations collected in 2014 and 2015 in Arkansas, USA. Soil-applied saflufenacil, sulfentrazone, and flumioxazin reduced the seedling emergence 91–100%; however, fomesafen and oxyfluorfen showed reduced (63–90%) efficacy on some populations. Target-site mutation (TSM) is the major mechanism of resistance to PPO herbicides; therefore, six populations showing resistance to soil-applied fomesafen were selected for molecular investigations. A total of 81 survivors were genotyped for all known resistance-conferring mutations. A total of 64% and 36% survivors had single and double TSMs, respectively, with 69% of plants carrying TSM in both alleles of PPO2. Three survivors from two populations showed an additional copy of PPO2, whereas all other survivors had one copy. Expression analysis showed 3- to 6-fold upregulation of PPO2 in all plants from resistant populations tested. Transgenic overexpression of WT-ApPPO2 and dG210-Apppo2 in A. thaliana confirmed the reduced sensitivity to soil-applied fomesafen compared to the wild type. Collectively, PPO inhibitors applied pre-emergence are still effective in controlling populations resistant to foliar-applied PPO herbicides. Mechanically, elevated expression of resistant PPO2, alongside functional TSM, contribute to reduced sensitivity to soil-applied fomesafen.

Funder

Arkansas Soybean Promotion Board

Cotton Inc.

BASF

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3