Affiliation:
1. Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704, USA
2. BASF SE, Agricultural Research Station, 67117 Limburgerhof, Germany
Abstract
Resistance to protoporphyrinogen oxidase (PPO) inhibitors in Palmer amaranth is a major concern, given the high selection pressure and increasing number of populations with reduced sensitivity to PPO herbicides in the US. We evaluated the effect of five soil-applied herbicides on Palmer amaranth (Amaranthus palmeri S. Wats.) populations collected in 2014 and 2015 in Arkansas, USA. Soil-applied saflufenacil, sulfentrazone, and flumioxazin reduced the seedling emergence 91–100%; however, fomesafen and oxyfluorfen showed reduced (63–90%) efficacy on some populations. Target-site mutation (TSM) is the major mechanism of resistance to PPO herbicides; therefore, six populations showing resistance to soil-applied fomesafen were selected for molecular investigations. A total of 81 survivors were genotyped for all known resistance-conferring mutations. A total of 64% and 36% survivors had single and double TSMs, respectively, with 69% of plants carrying TSM in both alleles of PPO2. Three survivors from two populations showed an additional copy of PPO2, whereas all other survivors had one copy. Expression analysis showed 3- to 6-fold upregulation of PPO2 in all plants from resistant populations tested. Transgenic overexpression of WT-ApPPO2 and dG210-Apppo2 in A. thaliana confirmed the reduced sensitivity to soil-applied fomesafen compared to the wild type. Collectively, PPO inhibitors applied pre-emergence are still effective in controlling populations resistant to foliar-applied PPO herbicides. Mechanically, elevated expression of resistant PPO2, alongside functional TSM, contribute to reduced sensitivity to soil-applied fomesafen.
Funder
Arkansas Soybean Promotion Board
Cotton Inc.
BASF
Subject
Agronomy and Crop Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献