COVID-19 Open Source Data Sets: A Comprehensive Survey

Author:

Shuja Junaid,Alanazi Eisa,Alasmary Waleed,Alashaikh Abdulaziz

Abstract

AbstractIn December 2019, a novel virus named COVID-19 emerged in the city of Wuhan, China. In early 2020, the COVID-19 virus spread in all continents of the world except Antarctica causing widespread infections and deaths due to its contagious characteristics and no medically proven treatment. The COVID-19 pandemic has been termed as the most consequential global crisis after the World Wars. The first line of defense against the COVID-19 spread are the non-pharmaceutical measures like social distancing and personal hygiene. The great pandemic affecting billions of lives economically and socially has motivated the scientific community to come up with solutions based on computer-aided digital technologies for diagnosis, prevention, and estimation of COVID-19. Some of these efforts focus on statistical and Artificial Intelligence-based analysis of the available data concerning COVID-19. All of these scientific efforts necessitate that the data brought to service for the analysis should be open source to promote the extension, validation, and collaboration of the work in the fight against the global pandemic. Our survey is motivated by the open source efforts that can be mainly categorized as (a) COVID-19 diagnosis from CT scans, X-ray images, and cough sounds, (b) COVID-19 case reporting, transmission estimation, and prognosis from epidemiological, demographic, and mobility data, (c) COVID-19 emotional and sentiment analysis from social media, and (d) knowledge-based discovery and semantic analysis from the collection of scholarly articles covering COVID-19. We survey and compare research works in these directions that are accompanied by open source data and code. Future research directions for data-driven COVID-19 research are also debated. We hope that the article will provide the scientific community with an initiative to start open source extensible and transparent research in the collective fight against the COVID-19 pandemic.

Publisher

Cold Spring Harbor Laboratory

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3