The impact of thermal pasteurization on viral load in human milk and other matrices: A rapid review

Author:

Pitino Michael A.ORCID,O’Connor Deborah L.,McGeer Allison J.,Unger Sharon

Abstract

AbstractHolder pasteurization (62.5°C, 30 min) of human milk (HM) is thought to reduce the risk of transmitting viruses to an infant. Some viruses may be secreted into milk – others may be contaminants. The effect of thermal pasteurization on viruses in HM has yet to be rigorously reviewed. The objective of this study is to characterize the effect of commonly used pasteurization techniques on viruses in HM and non-HM matrices. Databases (MEDLINE, Embase, Web of Science) were searched from inception to April 20th, 2020 for primary research articles assessing the impact of pasteurization on viral load or detection of live virus. Reviews were excluded, as were studies lacking quantitative measurements or those assessing pasteurization as a component of a larger process. Overall, 65,131 reports were identified, and 108 studies included. Pasteurization of HM at a minimum temperature of 56°C-60°C is effective at reducing detectable live virus. In cell culture media or plasma, coronaviruses (e.g., SARS-CoV, SARS-CoV-2, MERS) are highly susceptible to heating at ≥56°C. Although pasteurization parameters and matrices reported vary, all viruses studied, with the exception of parvoviruses, were susceptible to thermal killing. Future research important for the study of novel viruses should standardize pasteurization protocols and should test viral inactivation using a human milk matrix.Novelty bulletsIn all matrices, including human milk, pasteurization at temperatures of 62.5°C was generally sufficient to reduce surviving viral load by several logs or to below the limit of detection.Holder pasteurization (62.5°C, 30 min) of human donor milk should be sufficient to inactivate non-heat resistant viruses, including coronaviruses, if present.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3