Author:
Wheatley Rachel M.,Ford Brandon L.,Li Li,Aroney Samuel T. N.,Knights Hayley E.,Ledermann Raphael,East Alison K.,Ramachandran Vinoy K.,Poole Philip S.
Abstract
AbstractBy analyzing successive lifestyle stages of a model Rhizobium-legume symbiosis using mariner-based transposon insertion sequencing (INSeq), we have defined the genes required for rhizosphere growth, root colonization, bacterial infection, N2-fixing bacteroids and release from legume (pea) nodules. While only 27 genes are annotated as nif and fix in Rhizobium leguminosarum, we show 603 genetic regions (593 genes, 5 tRNAs and 5 RNA features) are required for the competitive ability to nodulate pea and fix N2. Of these, 146 are common to rhizosphere growth through to bacteroids. This large number of genes, defined as rhizosphere-progressive, highlights how critical successful competition in the rhizosphere is to subsequent infection and nodulation. As expected, there is also a large group (211) specific for nodule bacteria and bacteroid function. Nodule infection and bacteroid formation require genes for motility, cell envelope restructuring, nodulation signalling, N2 fixation, and metabolic adaptation. Metabolic adaptation includes urea, erythritol and aldehyde metabolism, glycogen synthesis, dicarboxylate metabolism and glutamine synthesis (GlnII). There are separate lifestyle adaptations specific to rhizosphere growth (17) and root colonization (23), distinct from infection and nodule formation. These results dramatically highlight the importance of competition at multiple stages of a Rhizobium-legume symbiosis.SignificanceRhizobia are soil-dwelling bacteria that form symbioses with legumes and provide biologically useable nitrogen as ammonium for the host plant. High-throughput DNA sequencing has led to a rapid expansion in publication of complete genomes for numerous rhizobia, but analysis of gene function increasingly lags gene discovery. Mariner-based transposon insertion sequencing (INSeq) has allowed us to characterize the fitness contribution of bacterial genes and determine those functionally important in a Rhizobium-legume symbiosis at multiple stages of development.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献