Translation-associated mutational U-pressure in the first ORF of SARS-CoV-2 and other coronaviruses

Author:

Victorovich Khrustalev Vladislav,Rajanish Giri,Aleksandrovna Khrustaleva Tatyana,Krishna Kapuganti Shivani,Nicolaevich Stojarov Aleksander,Vitoldovich Poboinev Victor

Abstract

AbstractWithin four months of the ongoing COVID-19 pandemic caused by SARS-CoV-2, more than 250 nucleotide mutations have been detected in the ORF1 of the virus isolated from different parts of the globe. These observations open up an obvious question about the rate and direction of mutational pressure for further vaccine and therapeutics designing. In this study, we did a comparative analysis of ORF1a and ORF1b by using the first isolate (Wuhan strain) as the parent sequence. We observed that most of the nucleotide mutations are C to U transitions. The rate of synonymous C to U transitions is significantly higher than the rate of nonsynonymous ones, indicating negative selection on amino acid substitutions. Further, trends in nucleotide usage bias have been investigated in 49 coronaviruses species. A strong bias in nucleotide usage in fourfold degenerated sites towards uracil residues is seen in ORF1 of all the studied coronaviruses. A more substantial mutational U pressure is observed in ORF1a than in ORF1b owing to the translation of ORF1ab via programmed ribosomal frameshifting. Unlike other nucleotide mutations, mutational U pressure caused by cytosine deamination, mostly occurring in the RNA-plus strand, cannot be corrected by the proof-reading machinery of coronaviruses. The knowledge generated on the direction of mutational pressure during translation of viral RNA-plus strands has implications for vaccine and nucleoside analogue development for treating covid-19 and other coronavirus infections.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SARS-CoV-2 Mutations: An Insight;Human Viruses: Diseases, Treatments and Vaccines;2021

2. Reprofiling of approved drugs against SARS-CoV-2 main protease: an in-silico study;Journal of Biomolecular Structure and Dynamics;2020-11-12

3. Implications of SARS-CoV-2 Mutations for Genomic RNA Structure and Host microRNA Targeting;International Journal of Molecular Sciences;2020-07-07

4. Coronavirus genomes carry the signatures of their habitats;2020-06-13

5. Stability of SARS-CoV-2 Phylogenies;2020-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3