Abstract
ABSTRACTCoronaviruses such as SARS-CoV-2 regularly infect host tissues that express antiviral proteins (AVPs) in abundance. Understanding how they evolve to adapt or evade host immune responses is important in the effort to control the spread of COVID-19. Two AVPs that may shape viral genomes are the zinc finger antiviral protein (ZAP) and the apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3 protein (APOBEC3). The former binds to CpG dinucleotides to facilitate the degradation of viral transcripts while the latter deaminates C into U residues leading to dysfunctional transcripts. We tested the hypothesis that both APOBEC3 and ZAP may act as primary selective pressures that shape the genome of an infecting coronavirus by considering a comprehensive number of publicly available genomes for seven coronaviruses (SARS-CoV-2, SARS-CoV, MERS, Bovine CoV, Murine MHV, Porcine HEV, and Canine CoV). We show that coronaviruses that regularly infect tissues with abundant AVPs have CpG-deficient and U-rich genomes; whereas viruses that do not infect tissues with abundant AVPs do not share these sequence hallmarks. In SARS-CoV-2, CpG is most deficient in the S protein region to evaded ZAP-mediated antiviral defense during cell entry. Furthermore, over four months of SARS-CoV-2 evolutionary history, we observed a marked increase in C to U substitutions in the 5’ UTR and ORF1ab regions. This suggests that the two regions could be under constant C to U deamination by APOBEC3. The evolutionary pressures exerted by host immune systems onto viral genomes may motivate novel strategies for SARS-CoV-2 vaccine development.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献