TractEM: Fast Protocols for Whole Brain Deterministic Tractography-Based White Matter Atlas

Author:

Bayrak Roza G.ORCID,Wang Xuan,Schilling Kurt G.ORCID,Greer Jasmine M.,Hansen Colin B.ORCID,Blaber Justin A.,Williams Owen,Beason-Held Lori L.ORCID,Resnick Susan M.,Rogers Baxter P.ORCID,Landman Bennett A.ORCID

Abstract

AbstractReproducible identification of white matter tracts across subjects is essential for the study of structural connectivity of the human brain. The key challenges are anatomical differences between subjects and human rater subjectivity in labeling. Labeling white matter regions of interest presents many challenges due to the need to integrate both local and global information. Clearly communicating the human/manual processes to capture this information is cumbersome, yet essential to lay a solid foundation for comprehensive atlases. The state-of-the-art for white matter atlas is the single population-averaged Johns Hopkins Eve atlas. A critical bottleneck with the Eve atlas framework is that manual labeling time is extensive and peripheral white matter regions are conservatively labeled. In this work, we developed protocols that will facilitate manual virtual dissection of white matter pathways, with the goals to be anatomically accurate, intuitive, reproducible, and act as an initial stage to build an amenable knowledge base of neuroanatomical regions. We analyzed reproducibility of the fiber bundles and variability of human raters using DICE correlation coefficient, intraclass correlation coefficient, and root mean squared error. The protocols at their initial stage have shown promising results on both typical 3T research acquisition Baltimore Longitudinal Study of Aging and high-acquisition quality Human Connectome Project datasets. The TractEM manual labeling protocols allow for reconstruction of reproducible subject-specific fiber bundles across the brain. The protocols and sample results have been made available in open source to improve generalizability and reliability in collaboration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3