Deep Learning Methods for Identification of White Matter Fiber Tracts: Review of State-of-the-Art and Future Prospective
Author:
Publisher
Springer Science and Business Media LLC
Subject
Information Systems,General Neuroscience,Software
Link
https://link.springer.com/content/pdf/10.1007/s12021-023-09636-4.pdf
Reference113 articles.
1. Abou Arkoub, S., et al. (2020). Survey on deep learning techniques for medical imaging application area. In Machine Learning Paradigms: Advances in Deep Learning-based Technological Applications, G. A. Tsihrintzis and L. C. Jain, Eds. Cham: Springer International Publishing, pp. 149–189.
2. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., & Erickson, B. J. (2017). Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. Journal of Digital Imaging, 30(4), 449–459.
3. Astolfi, P., et al. (2020). A stem-based dissection of inferior fronto-occipital fasciculus with a deep learning model. In IEEE 17th International Symposium on Biomedical Imaging - ISBI 2020, pp. 267–270.
4. Avital, I., Nelkenbaum, I., Tsarfaty, G., Konen, E., Kiryati, N., & Mayer, A. (2020). Neural segmentation of seeding ROIs (sROIs) for pre-surgical brain tractography. IEEE Transactions on Medical Imaging, 39(5), 1655–1667.
5. Azizi, S., et al. (2021). Big self-supervised models advance medical image classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision - CVF 2021, pp. 3478–3488.
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Assessment of U-Net in the segmentation of short tracts: Transferring to clinical MRI routine;Magnetic Resonance Imaging;2024-09
2. NeurostimML: a machine learning model for predicting neurostimulation-induced tissue damage;Journal of Neural Engineering;2024-06-01
3. A systematic review of automated methods to perform white matter tract segmentation;Frontiers in Neuroscience;2024-03-19
4. Imaging of the superficial white matter in health and disease;Imaging Neuroscience;2024
5. NeurostimML: A machine learning model for predicting neurostimulation-induced tissue damage;2023-10-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3