The master regulator for entry into sporulation inBacillus subtilisbecomes a cell-specific transcription factor after asymmetric division

Author:

Fujita Masaya,Losick Richard

Abstract

Gene transcription at the onset of sporulation inBacillus subtilisis governed by Spo0A, a member of the response regulator family of transcription factors. Spo0A is traditionally viewed as the master regulator for entry into development. We now report that Spo0A continues to function after the initiation phase of sporulation and that it becomes a cell-specific transcription factor when the sporangium is divided into a mother cell and forespore. We observed that (1) Spo0A and Spo0A-directed gene transcription reached high levels in the mother cell; (2) an activated form of Spo0A impaired sporulation when produced in the forespore but not when produced in the mother cell; and (3) an inhibitor of Spo0A called Spo0A-N impaired sporulation and Spo0A-directed transcription when produced in the mother cell but not when produced in the forespore. Spo0A-N, which corresponds to the NH2-terminal domain of Spo0A, was shown to compete with the full-length response regulator for phosphorylation by the phosphorelay protein Spo0B. We propose that Spo0A is the earliest-acting transcription factor in the mother-cell line of gene expression and that in terms of abundance and transcriptional activity Spo0A may function predominantly as a cell-specific regulatory protein.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3