Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation

Author:

Chung J D1,Stephanopoulos G1,Ireton K1,Grossman A D1

Affiliation:

1. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139.

Abstract

Early during endospore formation in the bacterium Bacillus subtilis, two distinct cell types are formed. The initiation of this developmental pathway requires several physiological conditions (e.g., nutrient deprivation) and is controlled by the Spo0A transcription factor. We have found that in a culture of sporulating cells, there are two subpopulations, one that has initiated the developmental program and activated the expression of early developmental genes and one in which early developmental gene expression remains uninduced. We measured the expression of developmental (spo) genes in single cells of B. subtilis by using spo-lacZ fusions. Cells containing a spo-lacZ fusion were stained with a dye that fluoresces upon hydrolysis by beta-galactosidase, and the fluorescence in individual cells was measured with a flow cytometer. For Spo+ cells, we found that the proportion of the population expressing early developmental genes correlates well with the fraction of the population that eventually produces spores. In addition, mutations that cause a decrease in the amount of activated (phosphorylated) Spo0A transcription factor cause a decrease in the size of the subpopulation expressing early developmental genes that are directly activated by Spo0A approximately P. Again, the size of the subpopulation correlates well with the fraction of cells that produce spores. These results indicate that a threshold level of activated Spo0A (Spo0A approximately P) or of a component of the phosphorylation pathway must accumulate to induce sporulation gene expression and that most of the cells that are able to induce the expression of early genes that are directly activated by Spo0A approximately P go on to produce mature spores.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3