FISIK: Framework for the Inference of in Situ Interaction Kinetics from single-molecule imaging data

Author:

de Oliveira Luciana R.,Jaqaman Khuloud

Abstract

AbstractRecent experimental and computational developments have been pushing the limits of live-cell single-molecule imaging, enabling the monitoring of inter-molecular interactions in their native environment with high spatiotemporal resolution. However, interactions are captured only for the labeled subset of molecules, which tends to be a small fraction. As a result, it has remained a challenge to calculate molecular interaction kinetics, in particular association rates, from single-molecule tracking data. To overcome this challenge, we developed a mathematical modeling-based Framework for the Inference of in Situ Interaction Kinetics from single-molecule imaging data (termed “FISIK”). FISIK consists of (1) devising a mathematical model of molecular movement and interactions, mimicking the biological system and data-acquisition setup, and (2) estimating the unknown model parameters, including molecular association and dissociation rates, by fitting the model to experimental single-molecule data. Due to the stochastic nature of the model and data, we adapted the method of indirect inference for model calibration. We validated FISIK using a series of tests, where we simulated trajectories of diffusing molecules that interact with each other, considering a wide range of model parameters, and including resolution limitations and tracking errors. We found that FISIK has the sensitivity to determine association and dissociation rates, where its accuracy depends on the labeled fraction of molecules and the extent of molecule tracking errors. For cases where the labeled fraction is relatively low (e.g. to afford accurate tracking), combining dynamic but sparse single-molecule imaging data with almost whole-population oligomer distribution data improves FISIK’s performance. All in all, FISIK is a promising approach for the derivation of molecular interaction kinetics in their native environment from single-molecule imaging data.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3