Error correction and assembly complexity of single molecule sequencing reads.

Author:

Lee Hayan,Gurtowski James,Yoo Shinjae,Marcus Shoshana,McCombie W. Richard,Schatz Michael

Abstract

Third generation single molecule sequencing technology is poised to revolutionize genomics by enabling the sequencing of long, individual molecules of DNA and RNA. These technologies now routinely produce reads exceeding 5,000 basepairs, and can achieve reads as long as 50,000 basepairs. Here we evaluate the limits of single molecule sequencing by assessing the impact of long read sequencing in the assembly of the human genome and 25 other important genomes across the tree of life. From this, we develop a new data-driven model using support vector regression that can accurately predict assembly performance. We also present a novel hybrid error correction algorithm for long PacBio sequencing reads that uses pre-assembled Illumina sequences for the error correction. We apply it several prokaryotic and eukaryotic genomes, and show it can achieve near-perfect assemblies of small genomes (< 100Mbp) and substantially improved assemblies of larger ones. All source code and the assembly model are available open-source.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3