Simulated High Throughput Sequencing Datasets: A Crucial Tool for Validating Bioinformatic Pathogen Detection Pipelines

Author:

Espindola Andres S.1ORCID

Affiliation:

1. Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA

Abstract

The validation of diagnostic assays in plant pathogen detection is a critical area of research. It requires the use of both negative and positive controls containing a known quantity of the target pathogen, which are crucial elements when calculating analytical sensitivity and specificity, among other diagnostic performance metrics. High Throughput Sequencing (HTS) is a method that allows the simultaneous detection of a theoretically unlimited number of plant pathogens. However, accurately identifying the pathogen from HTS data is directly related to the bioinformatic pipeline utilized and its effectiveness at correctly assigning reads to their associated taxa. To this day, there is no consensus about the pipeline that should be used to detect the pathogens in HTS data, and results often undergo review and scientific evaluation. It is, therefore, imperative to establish HTS resources tailored for evaluating the performance of bioinformatic pipelines utilized in plant pathogen detection. Standardized artificial HTS datasets can be used as a benchmark by allowing users to test their pipelines for various pathogen infection scenarios, some of the most prevalent being multiple infections, low titer pathogens, mutations, and new strains, among others. Having these artificial HTS datasets in the hands of HTS diagnostic assay validators can help resolve challenges encountered when implementing bioinformatics pipelines for routine pathogen detection. Offering these purely artificial HTS datasets as benchmarking tools will significantly advance research on plant pathogen detection using HTS and enable a more robust and standardized evaluation of the bioinformatic methods, thereby enhancing the field of plant pathogen detection.

Funder

Oklahoma Agricultural Experiment Station

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3