Targeting a Therapy-Resistant Cancer Cell State Using Masked Electrophiles as GPX4 Inhibitors

Author:

Eaton John K.ORCID,Furst Laura,Ruberto Richard A.,Moosmayer Dieter,Hillig Roman C.,Hilpmann André,Zimmermann Katja,Ryan Matthew J.,Niehues Michael,Badock Volker,Kramm Anneke,Chen Sixun,Clemons Paul A.,Gradl Stefan,Montagnon Claire,Lazarski Kiel E.,Christian Sven,Bajrami Besnik,Neuhaus Roland,Eheim Ashley L.,Viswanathan Vasanthi S.ORCID,Schreiber Stuart L.ORCID

Abstract

SUMMARYWe recently discovered that inhibition of the lipid peroxidase GPX4 can selectively kill cancer cells in a therapy-resistant state through induction of ferroptosis. Although GPX4 lacks a conventional druggable pocket, covalent small-molecule inhibitors are able to overcome this challenge by reacting with the GPX4 catalytic selenocysteine residue to eliminate enzymatic activity. Unfortunately, all currently-reported GPX4 inhibitors achieve their activity through reactive chloroacetamide groups. We demonstrate that such chloroacetamide-containing compounds are poor starting points for further advancement given their promiscuity, instability, and low bioavailability. Development of improved GPX4 inhibitors, including those with therapeutic potential, requires the identification of new electrophilic chemotypes and mechanisms of action that do not suffer these shortcomings. Here, we report our discovery that nitrile oxide electrophiles, and a set of remarkable chemical transformations that generates them in cells from masked precursors, provide an effective strategy for selective targeting of GPX4. Our results, which include structural insights, target engagement assays, and diverse GPX4-inhibitor tool compounds, provide critical insights that may galvanize development of improved compounds that illuminate the basic biology of GPX4 and therapeutic potential of ferroptosis induction. In addition, our discovery that nitrile oxide electrophiles engage in highly selective cellular interactions and are bioavailable in their masked forms may be relevant for targeting other currently undruggable proteins, such as those revealed by recent proteome-wide ligandability studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3