Critical nodes reveal peculiar features of human essential genes and protein interactome

Author:

Celestini Alessandro,Cianfriglia Marco,Mastrostefano Enrico,Palma Alessandro,Castiglione Filippo,Tieri PaoloORCID

Abstract

AbstractNetwork-based ranking methods (e.g., centrality analysis) have found extensive use in systems biology and network medicine for the prediction of essential proteins, for the prioritization of drug targets candidates in the treatment of several pathologies and in biomarker discovery, and for human disease genes identification. We here studied the connectivity of the human protein-protein interaction network (i.e., the interactome) to find the nodes whose removal has the heaviest impact on the network, i.e., maximizes its fragmentation. Such nodes are known as Critical Nodes (CNs). Specifically, we implemented a Critical Node Heuristic (CNH) and compared its performance against other four heuristics based on well known centrality measures. To better understand the structure of the interactome, the CNs’ role played in the network, and the different heuristics’ capabilities to grasp biologically relevant nodes, we compared the sets of nodes identified as CNs by each heuristic with two experimentally validated sets of essential genes, i.e., the genes whose removal impact on a given organism’s ability to survive. Our results show that classical centrality measures (i.e., closeness centrality, degree) found more essential genes with respect to CNH on the current version of the human interactome, however the removal of such nodes does not have the greatest impact on interactome connectivity, while, interestingly, the genes identified by CNH show peculiar characteristics both from the topological and the biological point of view. Finally, even if a relevant fraction of essential genes is found via the classical centrality measures, the same measures seem to fail in identifying the whole set of essential genes, suggesting once again that some of them are not central in the network, that there may be biases in the current interaction data, and that different, combined graph theoretical and other techniques should be applied for their discovery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3