HIV-1 Protease Evolvability is Affected by Synonymous Nucleotide Recoding

Author:

Nevot Maria,Jordan-Paiz Ana,Martrus Glòria,Andrés Cristina,García-Cehic Damir,Gregori Josep,Franco Sandra,Quer Josep,Martinez Miguel AngelORCID

Abstract

ABSTRACTOne unexplored aspect of HIV-1 genetic architecture is how codon choice influences population diversity and evolvability. Here we compared the development of HIV-1 resistance to protease inhibitors (PIs) between wild-type (WT) virus and a synthetic virus (MAX) carrying a codon-pair re-engineered protease sequence including 38 (13%) synonymous mutations. WT and MAX viruses showed indistinguishable replication in MT-4 cells or PBMCs. Both viruses were subjected to serial passages in MT-4 cells with selective pressure from the PIs atazanavir (ATV) and darunavir (DRV). After 32 successive passages, both the WT and MAX viruses developed phenotypic resistance to PIs (IC5014.6 ± 5.3 and 21.2 ± 9 nM for ATV, and 5. 9 ± 1.0 and 9.3 ± 1.9 for DRV, respectively). Ultra-deep sequence clonal analysis revealed that both viruses harbored previously described resistance mutations to ATV and DRV. However, the WT and MAX virus proteases showed different resistance variant repertoires, with the G16E and V77I substitutions observed only in WT, and the L33F, S37P, G48L, Q58E/K, and L89I substitutions detected only in MAX. Remarkably, G48L and L89I are rarely foundin vivoin PI-treated patients. The MAX virus showed significantly higher nucleotide and amino acid diversity of the propagated viruses with and without PIs (P< 0.0001), suggesting higher selective pressure for change in this recoded virus. Our results indicate that HIV-1 protease position in sequence space delineates the evolution of its mutant spectra. Nevertheless, the investigated synonymously recoded variant showed mutational robustness and evolvability similar to the WT virus.IMPORTANCELarge-scale synonymous recoding of virus genomes is a new tool for exploring various aspects of virus biology. Synonymous virus genome recoding can be used to investigate how a virus’s position in sequence space defines its mutant spectrum, evolutionary trajectory, and pathogenesis. In this study, we evaluated how synonymous recoding of the human immunodeficiency virus type 1 (HIV-1) protease impacts the development of protease inhibitor (PI) resistance. HIV-1 protease is a main target of current antiretroviral therapies. Our present results demonstrate that the wild-type (WT) virus and the virus with the recoded protease exhibited different patterns of resistance mutations after PI treatment. Nevertheless, the developed PI resistance phenotype was indistinguishable between the recoded virus and the WT virus, suggesting that the synonymously recoded protease HIV-1 and the WT protease virus were equally robust and evolvable.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3