Modulation of Poliovirus Replicative Fitness in HeLa Cells by Deoptimization of Synonymous Codon Usage in the Capsid Region

Author:

Burns Cara Carthel1,Shaw Jing1,Campagnoli Ray1,Jorba Jaume1,Vincent Annelet1,Quay Jacqueline1,Kew Olen1

Affiliation:

1. Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333

Abstract

ABSTRACT We replaced degenerate codons for nine amino acids within the capsid region of the Sabin type 2 oral poliovirus vaccine strain with corresponding nonpreferred synonymous codons. Codon replacements were introduced into four contiguous intervals spanning 97% of the capsid region. In the capsid region of the most highly modified virus construct, the effective number of codons used ( N C ) fell from 56.2 to 29.8, the number of CG dinucleotides rose from 97 to 302, and the G+C content increased from 48.4% to 56.4%. Replicative fitness in HeLa cells, measured by plaque areas and virus yields in single-step growth experiments, decreased in proportion to the number of replacement codons. Plaque areas decreased over an ∼10-fold range, and virus yields decreased over an ∼65-fold range. Perhaps unexpectedly, the synthesis and processing of viral proteins appeared to be largely unaltered by the restriction in codon usage. In contrast, total yields of viral RNA in infected cells were reduced ∼3-fold and specific infectivities of purified virions (measured by particle/PFU ratios) decreased ∼18-fold in the most highly modified virus. The replicative fitness of both codon replacement viruses and unmodified viruses increased with the passage number in HeLa cells. After 25 serial passages (∼50 replication cycles), most codon replacements were retained, and the relative fitness of the modified viruses remained well below that of the unmodified virus. The increased replicative fitness of high-passage modified virus was associated with the elimination of several CG dinucleotides. Potential applications for the systematic modulation of poliovirus replicative fitness by deoptimization of codon usage are discussed.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3