Minimally invasive, pressure probe based sampling allows for in-situ gene expression analyses in plant cells

Author:

Wada HiroshiORCID,Castellarin Simone D.ORCID,Matthews Mark A.,Shackel Kenneth A.,Gambetta Gregory A.ORCID

Abstract

AbstractBackgroundGene expression analyses are conducted using multiple approaches and increasingly research has been focused on assessing gene expression at the level of a tissue or even single-cells. To date, methods to assess gene expression at the single-cell in plant tissues have been semi-quantitative, require tissue disruption, and/or involve laborious, possibly artifact-inducing manipulation. In this work, we used grape berries (Vitis vinifera L. Zinfandel) as a model in order to examine the validity and reproducibility of an in-situ gene expression analysis method combining a cell pressure probe (CPP) with quantitative PCR (qPCR).ResultsWe developed a method to directly assess gene expression levels via qPCR from cellular fluids sampled in-situ with a CPP. Cellular fluids, with volumes in the picoliter range, were collected from intact berries with a CPP at various depths across skin and mesocarp tissues. The expression of a key anthocyanin biosynthetic gene, UDP-glucose: flavonoid 3-O-glucosyltransferase (VviUFGT), was analyzed as a test case since its expression is restricted to cells producing anthocyanins in grape berry skins during ripening. The method identifies samples contaminated with significant levels of genomic DNA by amplifying a region of VviUFGT that spans an intron. Therefore false positives were discarded which occurred in 28% of the samples tested. Shallow probing of skin cells showed high VviUFGT expression as expected while deeper probing of mesocarp cells resulted in no VviUFGT expression.ConclusionsThe clear correspondence of VviUFGT expression to the targeted cell samples suggests that the in-situ gene expression analysis using a CPP is reliable and does not result in contamination as the probe moves through tissues. This method can be paired to single-cell transcriptomic analyses in the future. We conclude that this technique represents a minimally invasive method of sampling plant cells in-situ which creates an opportunity for the analysis of cellular level, spatiotemporal responses in heterogeneous plant tissues.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3