Atomic force microscopy of phase separation on ruptured, giant unilamellar vesicles

Author:

Jiang Yanfei,Genin Guy M.,Pryse Kenneth M.,Elson Elliot L.

Abstract

AbstractGiant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) are synthetic model systems widely used in biophysical studies of lipid membranes. Phase separation behaviors of lipid species in these two model systems differ due to the lipid-substrate interactions that are present only for SLBs. Therefore, GUVs are believed to resemble natural cell membranes more closely, and a very large body of literature focuses on applying nano-characterization techniques to quantify phase separation on GUVs. However, one important technique, atomic force microscopy (AFM), has not yet been used successfully to study phase separation on GUVs. In the present study, we report that in binary systems, certain phase domains on GUVs retain their original shapes and patterns after the GUVs rupture on glass surfaces. This enabled AFM experiments on phase domains from binary GUVs containing 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). These DLPC/DSPC and DLPC/DPPC GUVs both presented two different gel phases, one of which (bright phase) included a relatively high concentration of DiI-C20 but excluded Bodipy-HPC, and the other of which (dark phase) excluded both probes. The bright phases are of interest because they seem to stabilize dark phases against coalescence. Results suggested that the gel phases labeled by DiI-C20 in the DLPC/DSPC membrane, which surround the dark gel phase, is an extra layer of membrane, indicating a highly curved structure that might stabilize the interior dark domains. This phenomenon was not found in the DLPC/DPPC membrane. These results show the utility of AFM on collapsed GUVs, and suggest a possible mechanism for stabilization of lipid domains.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Phase Separation in Biological Membranes: Integration of Theory and Experiment

2. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function

3. Calorimetric studies of dilute aqueous suspensions of bilayers formed from synthetic L- -lecithins;J. Biol. Chem,1972

4. Characterization of the plasma membrane of Mycoplasma laidlawii. VII. Phase transitions of membrane lipids;Biochim. Biophys. Acta,1970

5. Plasma membrane rafts engaged in T cell signalling: new developments in an old concept. Cell Commun. Signal;Ccs,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3