Latent space visualization, characterization, and generation of diverse vocal communication signals

Author:

Sainburg TimORCID,Thielk MarvinORCID,Gentner Timothy QORCID

Abstract

ABSTRACTAnimals produce vocalizations that range in complexity from a single repeated call to hundreds of unique vocal elements patterned in sequences unfolding over hours. Characterizing complex vocalizations can require considerable effort and a deep intuition about each species’ vocal behavior. Even with a great deal of experience, human characterizations of animal communication can be affected by human perceptual biases. We present here a set of computational methods that center around projecting animal vocalizations into low dimensional latent representational spaces that are directly learned from data. We apply these methods to diverse datasets from over 20 species, including humans, bats, songbirds, mice, cetaceans, and nonhuman primates, enabling high-powered comparative analyses of unbiased acoustic features in the communicative repertoires across species. Latent projections uncover complex features of data in visually intuitive and quantifiable ways. We introduce methods for analyzing vocalizations as both discrete sequences and as continuous latent variables. Each method can be used to disentangle complex spectro-temporal structure and observe long-timescale organization in communication. Finally, we show how systematic sampling from latent representational spaces of vocalizations enables comprehensive investigations of perceptual and neural representations of complex and ecologically relevant acoustic feature spaces.

Publisher

Cold Spring Harbor Laboratory

Reference111 articles.

1. Acoustic sequences in non-human animals: a tutorial review and prospectus

2. Songs to syntax: the linguistics of birdsong

3. Parallels in the sequential organization of birdsong and human speech;Nature communications,2019

4. A simple explanation for the evolution of complex song syntax in bengalese finches;Biology letters,2013

5. Long-range order in canary song;PLoS computational biology,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3