Bidirectional Generative Adversarial Representation Learning for Natural Stimulus Synthesis

Author:

Reilly Johnny,Goodwin John D.,Lu Sihao,Kozlov Andriy S.ORCID

Abstract

AbstractThousands of species use vocal signals to communicate with one another. Vocalisations carry rich information, yet characterising and analysing these complex, high-dimensional signals is difficult and prone to human bias. Moreover, animal vocalisations are ethologically relevant stimuli whose representation by auditory neurons is an important subject of research in sensory neuroscience. A method that can efficiently generate naturalistic vocalisation waveforms would offer an unlimited supply of stimuli with which to probe neuronal computations. While unsupervised learning methods allow for the projection of vocalisations into low-dimensional latent spaces learned from the waveforms themselves, and generative modelling allows for the synthesis of novel vocalisations for use in downstream tasks, there is currently no method that would combine these tasks to produce naturalistic vocalisation waveforms for stimulus playback. In this paper, we demonstrate BiWaveGAN: a bidirectional Generative Adversarial Network (GAN) capable of learning a latent representation of ultrasonic vocalisations (USVs) from mice. We show that BiWaveGAN can be used to generate, and interpolate between, realistic vocalisation waveforms. We then use these synthesised stimuli along with natural USVs to probe the sensory input space of mouse auditory cortical neurons. We show that stimuli generated from our method evoke neuronal responses as effectively as real vocalisations, and produce receptive fields with the same predictive power. BiWaveGAN is not restricted to mouse USVs but can be used to synthesise naturalistic vocalisations of any animal species and interpolate between vocalisations of the same or different species, which could be useful for probing categorical boundaries in representations of ethologically relevant auditory signals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3