Stochastic optimal open-loop control as a theory of force and impedance planning via muscle co-contraction

Author:

Berret BastienORCID,Jean FrédéricORCID

Abstract

AbstractUnderstanding the underpinnings of biological motor control is an important issue in movement neuroscience. Optimal control theory is a leading framework to rationalize this problem in computational terms. Previously, optimal control models have been devised either in deterministic or in stochastic settings to account for different aspects of motor control (e.g. average behavior versus trial-to-trial variability). While these approaches have yielded valuable insights about motor control, they typically fail explain a common phenomenon known as muscle co-contraction. Co-contraction of agonist and antagonist muscles contributes to modulate the mechanical impedance of the neuromusculoskeletal system (e.g. joint stiffness) and is thought to be mainly under the influence of descending signals from the brain. Here we present a theory suggesting that one primary goal of motor planning may be to issue feedforward (open-loop) motor commands that optimally specify both force and impedance, according to the noisy neuromusculoskeletal dynamics and to optimality criteria based on effort and variance. We show that the proposed framework naturally accounts for several previous experimental findings regarding the regulation of force and impedance via muscle co-contraction in the upper-limb. Optimal feedback (closedloop) control, preprogramming feedback gains but requiring on-line state estimation processes through long-latency sensory feedback loops, may then complement this nominal feedforward motor command to fully determine the limb’s mechanical impedance. The stochastic optimal open-loop control theory may provide new insights about the general articulation of feedforward/feedback control mechanisms and justify the occurrence of muscle co-contraction in the neural control of movement.Author summaryThis study presents a novel computational theory to explain the planning of force and impedance (e.g. stiffness) in the neural control of movement. It assumes that one main goal of motor planning is to elaborate feedforward motor commands that determine both the force and the impedance required for the task at hand. These feedforward motor commands (i.e. that are defined prior to movement execution) are designed to minimize effort and variance costs considering the uncertainty arising from sensorimotor noise. A major outcome of this mathematical framework is the explanation of a long-known phenomenon called muscle co-contraction (i.e. the concurrent contraction of opposing muscles). Muscle co-contraction has been shown to occur in many situations but previous modeling works struggled to account for it. Although effortful, co-contraction contributes to increase the robustness of motor behavior (e.g. small variance) upstream of sophisticated optimal feedback control processes that require state estimation from delayed sensory feedback to function. This work may have implications regarding our understanding of the neural control of movement in computational terms. It also provides a theoretical ground to explain how to optimally plan force and impedance within a general and versatile framework.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3