deGSM: memory scalable construction of large scale de Bruijn Graph

Author:

Guo Hongzhe,Fu Yilei,Gao Yan,Li Junyi,Wang Yadong,Liu Bo

Abstract

AbstractMotivationDe Bruijn graph, a fundamental data structure to represent and organize genome sequence, plays important roles in various kinds of sequence analysis tasks such as de novo assembly, high-throughput sequencing (HTS) read alignment, pan-genome analysis, metagenomics analysis, HTS read correction, etc. With the rapid development of HTS data and ever-increasing number of assembled genomes, there is a high demand to construct de Bruijn graph for sequences up to Tera-base-pair level. It is non-trivial since the size of the graph to be constructed could be very large and each graph consists of hundreds of billions of vertices and edges. Current existing approaches may have unaffordable memory footprints to handle such a large de Bruijn graph. Moreover, it also requires the construction approach to handle very large dataset efficiently, even if in a relatively small RAM space.ResultsWe propose a lightweight parallel de Bruijn graph construction approach, de Bruijn Graph Constructor in Scalable Memory (deGSM). The main idea of deGSM is to efficiently construct the Bur-rows-Wheeler Transformation (BWT) of the unipaths of de Bruijn graph in constant RAM space and transform the BWT into the original unitigs. It is mainly implemented by a fast parallel external sorting of k-mers, which allows only a part of k-mers kept in RAM by a novel organization of the k-mers. The experimental results demonstrate that, just with a commonly used machine, deGSM is able to handle very large genome sequence(s), e.g., the contigs (305 Gbp) and scaffolds (1.1 Tbp) recorded in Gen-Bank database and Picea abies HTS dataset (9.7 Tbp). Moreover, deGSM also has faster or comparable construction speed compared with state-of-the-art approaches. With its high scalability and efficiency, deGSM has enormous potentials in many large scale genomics studies.Availabilityhttps://github.com/hitbc/deGSM.Contactydwang@hit.edu.cn (YW) and bo.liu@hit.edu.cn (BL)Supplementary informationSupplementary data are available online.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3