Athena: Automated Tuning of k-mer based Genomic Error Correction Algorithms using Language Models

Author:

Abdallah Mustafa,Mahgoub Ashraf,Ahmed Hany,Chaterji Somali

Abstract

Abstract The performance of most error-correction (EC) algorithms that operate on genomics reads is dependent on the proper choice of its configuration parameters, such as the value of k in k-mer based techniques. In this work, we target the problem of finding the best values of these configuration parameters to optimize error correction and consequently improve genome assembly. We perform this in an adaptive manner, adapted to different datasets and to EC tools, due to the observation that different configuration parameters are optimal for different datasets, i.e., from different platforms and species, and vary with the EC algorithm being applied. We use language modeling techniques from the Natural Language Processing (NLP) domain in our algorithmic suite, Athena, to automatically tune the performance-sensitive configuration parameters. Through the use of N-Gram and Recurrent Neural Network (RNN) language modeling, we validate the intuition that the EC performance can be computed quantitatively and efficiently using the “perplexity” metric, repurposed from NLP. After training the language model, we show that the perplexity metric calculated from a sample of the test (or production) data has a strong negative correlation with the quality of error correction of erroneous NGS reads. Therefore, we use the perplexity metric to guide a hill climbing-based search, converging toward the best configuration parameter value. Our approach is suitable for both de novo and comparative sequencing (resequencing), eliminating the need for a reference genome to serve as the ground truth. We find that Athena can automatically find the optimal value of k with a very high accuracy for 7 real datasets and using 3 different k-mer based EC algorithms, Lighter, Blue, and Racer. The inverse relation between the perplexity metric and alignment rate exists under all our tested conditions—for real and synthetic datasets, for all kinds of sequencing errors (insertion, deletion, and substitution), and for high and low error rates. The absolute value of that correlation is at least 73%. In our experiments, the best value of k found by Athena achieves an alignment rate within 0.53% of the oracle best value of k found through brute force searching (i.e., scanning through the entire range of k values). Athena’s selected value of k lies within the top-3 best k values using N-Gram models and the top-5 best k values using RNN models With best parameter selection by Athena, the assembly quality (NG50) is improved by a Geometric Mean of 4.72X across the 7 real datasets.

Funder

U.S. Department of Health & Human Services | National Institutes of Health

Lilly Endowment

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3