Including measures of high gamma power can improve the decoding of natural speech from EEG

Author:

Synigal Shyanthony R.,Teoh Emily S.,Lalor Edmund C.

Abstract

ABSTRACTThe human auditory system is adept at extracting information from speech in both single-speaker and multi-speaker situations. This involves neural processing at the rapid temporal scales seen in natural speech. Non-invasive brain imaging (electro-/magnetoencephalography [EEG/MEG]) signatures of such processing have shown that the phase of neural activity below 16 Hz tracks the dynamics of speech, whereas invasive brain imaging (electrocorticography [ECoG]) has shown that such rapid processing is even more strongly reflected in the power of neural activity at high frequencies (around 70-150 Hz; known as high gamma). The aim of this study was to determine if high gamma power in scalp recorded EEG carries useful stimulus-related information, despite its reputation for having a poor signal to noise ratio. Furthermore, we aimed to assess whether any such information might be complementary to that reflected in well-established low frequency EEG indices of speech processing. We used linear regression to investigate speech envelope and attention decoding in EEG at low frequencies, in high gamma power, and in both signals combined. While low frequency speech tracking was evident for almost all subjects as expected, high gamma power also showed robust speech tracking in a minority of subjects. This same pattern was true for attention decoding using a separate group of subjects who undertook a cocktail party attention experiment. For the subjects who showed speech tracking in high gamma power, the spatiotemporal characteristics of that high gamma tracking differed from that of low-frequency EEG. Furthermore, combining the two neural measures led to improved measures of speech tracking for several subjects. Overall, this indicates that high gamma power EEG can carry useful information regarding speech processing and attentional selection in some subjects and combining it with low frequency EEG can improve the mapping between natural speech and the resulting neural responses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3