Author:
Synigal Shyanthony R.,Teoh Emily S.,Lalor Edmund C.
Abstract
ABSTRACTThe human auditory system is adept at extracting information from speech in both single-speaker and multi-speaker situations. This involves neural processing at the rapid temporal scales seen in natural speech. Non-invasive brain imaging (electro-/magnetoencephalography [EEG/MEG]) signatures of such processing have shown that the phase of neural activity below 16 Hz tracks the dynamics of speech, whereas invasive brain imaging (electrocorticography [ECoG]) has shown that such rapid processing is even more strongly reflected in the power of neural activity at high frequencies (around 70-150 Hz; known as high gamma). The aim of this study was to determine if high gamma power in scalp recorded EEG carries useful stimulus-related information, despite its reputation for having a poor signal to noise ratio. Furthermore, we aimed to assess whether any such information might be complementary to that reflected in well-established low frequency EEG indices of speech processing. We used linear regression to investigate speech envelope and attention decoding in EEG at low frequencies, in high gamma power, and in both signals combined. While low frequency speech tracking was evident for almost all subjects as expected, high gamma power also showed robust speech tracking in a minority of subjects. This same pattern was true for attention decoding using a separate group of subjects who undertook a cocktail party attention experiment. For the subjects who showed speech tracking in high gamma power, the spatiotemporal characteristics of that high gamma tracking differed from that of low-frequency EEG. Furthermore, combining the two neural measures led to improved measures of speech tracking for several subjects. Overall, this indicates that high gamma power EEG can carry useful information regarding speech processing and attentional selection in some subjects and combining it with low frequency EEG can improve the mapping between natural speech and the resulting neural responses.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献