Delta/theta band EEG differentially tracks low and high frequency speech-derived envelopes

Author:

Bröhl FelixORCID,Kayser ChristophORCID

Abstract

AbstractThe representation of speech in the brain is often examined by measuring the alignment of rhythmic brain activity to the speech envelope. To conveniently quantify this alignment (termed ‘speech tracking’) many studies consider the overall speech envelope, which combines acoustic fluctuations across the spectral range. Using EEG recordings, we show that using this overall envelope can provide a distorted picture on speech encoding. We systematically investigated the encoding of spectrally-limited speech-derived envelopes presented by individual and multiple noise carriers in the human brain. Tracking in the 1 to 6 Hz EEG bands differentially reflected low (0.2 – 0.83 kHz) and high (2.66 – 8 kHz) frequency speech-derived envelopes. This was independent of the specific carrier frequency but sensitive to attentional manipulations, and reflects the context-dependent emphasis of information from distinct spectral ranges of the speech envelope in low frequency brain activity. As low and high frequency speech envelopes relate to distinct phonemic features, our results suggest that functionally distinct processes contribute to speech tracking in the same EEG bands, and are easily confounded when considering the overall speech envelope.HighlightsDelta/theta band EEG tracks band-limited speech-derived envelopes similar to real speechLow and high frequency speech-derived envelopes are represented differentiallyHigh-frequency derived envelopes are more susceptible to attentional and contextual manipulationsDelta band tracking shifts towards low frequency derived envelopes with more acoustic detail

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3