Collective intercellular communication through ultra-fast hydrodynamic trigger waves

Author:

Mathijssen Arnold J. T. M.ORCID,Culver Joshua,Bhamla M. SaadORCID,Prakash ManuORCID

Abstract

The biophysical relationships between sensors and actuators [1–5] have been fundamental to the development of complex life forms; Abundant flows are generated and persist in aquatic environments by swimming organisms [6–13], while responding promptly to external stimuli is key to survival [14–19]. Here, akin to a chain reaction [20–22], we present the discovery of hydrodynamic trigger waves in cellular communities of the protistSpirostomum ambiguum, propagating hundreds of times faster than the swimming speed. Coiling its cytoskeleton,Spirostomumcan contract its long body by 50% within milliseconds [23], with accelerations reaching 14g-forces. Surprisingly, a single cellular contraction (transmitter) is shown to generate long-ranged vortex flows at intermediate Reynolds numbers, which can trigger neighbouring cells, in turn. To measure the sensitivity to hydrodynamic signals (receiver), we further present a high-throughput suction-flow device to probe mechanosensitive ion channel gating [24] by back-calculating the microscopic forces on the cell membrane. These ultra-fast hydrodynamic trigger waves are analysed and modelled quantitatively in a universal framework of antenna and percolation theory [25, 26]. A phase transition is revealed, requiring a critical colony density to sustain collective communication. Our results suggest that this signalling could help organise cohabiting communities over large distances, influencing long-term behaviour through gene expression, comparable to quorum sensing [16]. More immediately, as contractions release toxins [27], synchronised discharges could also facilitate the repulsion of large predators, or conversely immobilise large prey. We postulate that beyond protists numerous other freshwater and marine organisms could coordinate with variations of hydrodynamic trigger waves.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Limits to Information Transfer Through Biological Autoluminescence;Ultra-Weak Photon Emission from Biological Systems;2023

2. Macromolecules of the cell: a polymer science viewpoint;Polymer International;2020-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3