Meningitis pathogens evade immune responses by thermosensing

Author:

Eichner HannesORCID,Spelmink Laura,Pathak Anuj,Henriques-Normark BirgittaORCID,Loh EdmundORCID

Abstract

AbstractBacterial meningitis is a major cause of death and disability in children worldwide. Two human restricted pathogens, Streptococcus pneumoniae and Haemophilus influenzae, are the major causative agents of bacterial meningitis, attributing to 200,000 deaths annually. These pathogens are often part of the nasopharyngeal microflora of healthy carriers. However, what factors elicit them to disseminate and cause invasive diseases remain unknown. Elevated temperature and fever are hallmarks of inflammation triggered by infections and can act as warning signal to these pathogens. Here, we investigate whether these pathogens could sense environmental temperature to evade host complement-mediated killing. We show that expression of two vital virulence factors and vaccine components, the capsule and factor H binding proteins, are temperature dependent. We identify and characterize four novel RNA thermosensors in S. pneumoniae and H. influenzae within their 5′-untranslated regions of genes, responsible for capsular biosynthesis and production of factor H binding proteins. Our data further demonstrate that these pathogens have co-evolved thermosensing abilities independently with unique RNA sequences, but distinct secondary structures, to evade the human immune system.Author SummaryStreptococcus pneumoniae and Haemophilus influenzae are bacteria that reside in the upper respiratory tract. This harmless colonization may progress to severe and often lethal septicaemia and meningitis, but molecular mechanisms that control why these pathogens invade the circulatory system remain largely unknown. Here we show that both S. pneumoniae and H. influenzae can evade complement killing by sensing the temperature of the host. We identify and characterize four novel RNA thermosensors in S. pneumoniae and H. influenzae within their respective 5′-untranslated regions of genes, influencing capsular biosynthesis and production of factor H binding proteins. Moreover, we show that these RNA thermosensors evolved independently with exclusive unique RNA sequences to sense the temperature in the nasopharynx and in other body sites to avoid immune killing. Our finding that regulatory RNA senses temperatures and directly regulate expression of two important virulence factors and vaccine components of S. pneumoniae and H. influenzae, is most important for our understanding of bacterial pathogenesis and for vaccine development. Our work could pave the way for similar studies in other important bacterial pathogens and enables clinicians and microbiologists to adjust their diagnostic techniques, and treatments to best fit the condition of the patients.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3