Bayesian estimation of Lassa virus epidemiological parameters: implications for spillover prevention using wildlife vaccination

Author:

Nuismer Scott L.ORCID,Remien Christopher H.,Basinski Andrew,Varrelman Tanner,Layman Nathan,Rosenke Kyle,Bird Brian,Jarvis Michael,Barry Peter,Fichet-Calvet Elisabeth

Abstract

AbstractLassa virus is a significant burden on human health throughout its endemic region in West Africa, with most human infections the result of spillover from the primary rodent reservoir of the virus, the natal multimammate mouse,M. natalensis. Here we develop a Bayesian methodology for estimating epidemiological parameters of Lassa virus within its rodent reservoir and for generating probabilistic predictions for the efficacy of rodent vaccination programs. Our approach uses Approximate Bayesian Computation (ABC) to integrate mechanistic mathematical models, remotely-sensed precipitation data, and Lassa virus surveillance data from rodent populations. Using simulated data, we show that our method accurately estimates key model parameters, even when surveillance data are available from only a relatively small number of points in space and time. Applying our method to previously published data from two villages in Guinea estimates the time-averagedR0of Lassa virus to be 1.658 and 1.453 for rodent populations in the villages of Bantou and Tanganya, respectively. Using the posterior distribution for model parameters derived from these Guinean populations, we evaluate the likely efficacy of vaccination programs relying on distribution of vaccine-laced baits. Our results demonstrate that effective and durable reductions in the risk of Lassa virus spillover into the human population will require repeated distribution of large quantities of vaccine.Author SummaryLassa virus is a chronic source of illness throughout West Africa, and is considered to be a threat for widespread emergence. Because most human infections result from contact with infected rodents, interventions that reduce the number of rodents infected with Lassa virus represent promising opportunities for reducing the public health burden of this disease. Evaluating how well alternative interventions are likely to perform is complicated by our relatively poor understanding of viral epidemiology within the reservoir population. Here we develop a novel statistical approach that couples mathematical models and viral surveillance data from rodent populations to robustly estimate key epidemiological parameters. Applying our method to existing data from Guinea yields well-resolved parameter estimates and allows us to simulate a variety of rodent vaccination programs. Together, our results demonstrate that rodent vaccination alone is unlikely to be an effective tool for reducing that public health burden of Lassa fever within West Africa.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3