Uneven chromosome contraction and expansion in the maize genome

Author:

Bruggmann Rémy,Bharti Arvind K.,Gundlach Heidrun,Lai Jinsheng,Young Sarah,Pontaroli Ana C.,Wei Fusheng,Haberer Georg,Fuks Galina,Du Chunguang,Raymond Christina,Estep Matt C.,Liu Renyi,Bennetzen Jeffrey L.,Chan Agnes P.,Rabinowicz Pablo D.,Quackenbush John,Barbazuk W. Brad,Wing Rod A.,Birren Bruce,Nusbaum Chad,Rounsley Steve,Mayer Klaus F.X.,Messing Joachim

Abstract

Maize (Zea mays or corn), both a major food source and an important cytogenetic model, evolved from a tetraploid that arose about 4.8 million years ago (Mya). As a result, maize has extensive duplicated regions within its genome. We have sequenced the two copies of one such region, generating 7.8 Mb of sequence spanning 17.4 cM of the short arm of chromosome 1 and 6.6 Mb (25.6 cM) from the long arm of chromosome 9. Rice, which did not undergo a similar whole genome duplication event, has only one orthologous region (4.9 Mb) on the short arm of chromosome 3, and can be used as reference for the maize homoeologous regions. Alignment of the three regions allowed identification of syntenic blocks, and indicated that the maize regions have undergone differential contraction in genic and intergenic regions and expansion by the insertion of retrotransposable elements. Approximately 9% of the predicted genes in each duplicated region are completely missing in the rice genome, and almost 20% have moved to other genomic locations. Predicted genes within these regions tend to be larger in maize than in rice, primarily because of the presence of predicted genes in maize with larger introns. Interestingly, the general gene methylation patterns in the maize homoeologous regions do not appear to have changed with contraction or expansion of their chromosomes. In addition, no differences in methylation of single genes and tandemly repeated gene copies have been detected. These results, therefore, provide new insights into the diploidization of polyploid species.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3