Clust: automatic extraction of optimal co-expressed gene clusters from gene expression data

Author:

Abu-Jamous BaselORCID,Kelly StevenORCID

Abstract

AbstractIdentification of co-expressed gene clusters can provide evidence for genetic or physical interactions between genes. Thus, co-expression clustering is a routine step in large-scale analyses of gene expression data. We show that commonly used clustering methods produce results that substantially disagree with each other, and do not match the biological expectations of co-expressed gene clusters. Furthermore, these clusters can contain up to 50% unreliably assigned genes. Consequently, downstream analyses of these clusters (e.g. functional term enrichment analysis) suffer from high error rates. We present clust, an automated method that solves these problems by extracting clusters that match the biological expectations of co-expressed genes. Using 100 datasets from five model organisms we demonstrate that clusters generated by clust are better than those produced by other methods, both numerically and for use in functional analysis. Finally, we show that clust can simultaneously cluster multiple datasets, enabling users to leverage the large quantity of public expression data for novel comparative analysis.

Publisher

Cold Spring Harbor Laboratory

Reference25 articles.

1. Signal Transduction and the Control of Gene Expression

2. Discovery of Genes Essential for Heme Biosynthesis through Large-Scale Gene Expression Analysis

3. Sharing and specificity of co-expression networks across 35 human tissues;the GTEx Consortium;PLOS Computational Biology,2015

4. An efficient algorithm for large-scale detection of protein families

5. MacQueen, J. , Some methods for classification and analysis of multivariate observations, presented at Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967 (unpublished).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3