Redox response of iron-sulfur glutaredoxin GRXS17 activates its holdase activity to protect plants from heat stress

Author:

Martins Laura,Knuesting Johannes,Bariat Laetitia,Dard Avilien,Freibert Sven A.,Marchand Christophe H.,Young David,Dung Nguyen Ho Thuy,Debures Anne,Saez-Vasquez Julio,Lemaire Stéphane D.,Lill Roland,Messens Joris,Scheibe Renate,Reichheld Jean-Philippe,Riondet Christophe

Abstract

ABSTRACTLiving organisms use a large panel of mechanisms to protect themselves from environmental stress. Particularly, heat stress induces misfolding and aggregation of proteins which are guarded by chaperone systems. Here, we examine the function the glutaredoxin GRXS17, a member of thiol reductases families in the model plant Arabidopsis thaliana. GRXS17 is a nucleocytosolic monothiol glutaredoxin consisting of an N-terminal thioredoxin (TRX)-domain and three CGFS-active site motif-containing GRX-domains that coordinate three iron-sulfur (Fe-S) clusters in a glutathione (GSH)-dependent manner. As a Fe-S cluster-charged holoenzyme, GRXS17 is likely involved in the maturation of cytosolic and nuclear Fe-S proteins. In addition to its role in cluster biogenesis, we showed that GRXS17 presents both foldase and redox-dependent holdase activities. Oxidative stress in combination with heat stress induces loss of its Fe-S clusters followed by subsequent formation of disulfide bonds between conserved active site cysteines in the corresponding TRX domains. This oxidation leads to a shift of GRXS17 to a high-MW complex and thus, activates its holdase activity. Moreover, we demonstrate that GRXS17 is specifically involved in plant tolerance to moderate high temperature and protects root meristematic cells from heat-induced cell death. Finally, we showed that upon heat stress, GRXS17 changes its client proteins, possibly to protect them from heat injuries. Therefore, we propose that the iron-sulfur cluster enzyme glutaredoxin GRXS17 is an essential guard to protect proteins against moderate heat stress, likely through a redox-dependent chaperone activity. All in all, we reveal the mechanism of an Fe-S cluster-dependent activity shift, turning the holoenzyme GRXS17 into a holdase that prevents damage caused by heat stress.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. DYn-2 Based Identification of Arabidopsis Sulfenomes;Mol Cell Proteomics,2008

2. Protein disulfide isomerase a multifunctional protein with multiple physiological roles;Front. Chem,2014

3. Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe–2S] clusters

4. Interplay between the NADP-Linked Thioredoxin and Glutathione Systems in Arabidopsis Auxin Signaling

5. Glutaredoxin catalysis requires two distinct glutathione interaction sites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3