Glutathione-mediated plant response to high-temperature

Author:

Dard AvilienORCID,Weiss Alizée,Bariat Laetitia,Picault Nathalie,Pontvianne FrédéricORCID,Riondet Christophe,Reichheld Jean-Philippe

Abstract

ABSTRACTClimate change induce global warming and intense heat waves that affect plant development and productivity. Among the molecular perturbations that high temperature induces in living cells is the accumulation of reactive oxygen species (ROS), which can damage macromolecules of the cell and perturb the cellular redox state. To cope with deleterious effects of ROS, plant, as other organisms, have developed strategies to scavenge ROS and to regulate their redox state. Among those, glutathione plays a major role in maintaining the cellular redox state and the function of key antioxidant enzymes like peroxidases. Here, we investigated the contribution of the redox systems in plant adaptation to high temperature. We studied two different high temperature regimes: a rise of ambient temperature to 27°C inducing a plant developmental adaptation program called thermomorphogenesis, and a 37°C treatment mimicking intense heat wave and affecting plant viability. Using the genetically encoded redox marker roGFP, we show that high temperature regimes lead to cytoplasm and nuclear oxidation and impact profoundly the glutathione pool rather than the glutathione redox state. Moreover, plant can restore the pool within a few hours, which likely contribute to plant adaptation to high temperature. However, conditional glutathione deficient mutants fail to adapt to intense heat waves or to induce thermomorphogenesis, suggesting that glutathione is involved in both heat adaptation mechanisms. We also evaluate by RNAseq analyses, how plant change its genome expression signature upon heat stress and identified a marked genome expression deviation in mutant deficient in glutathione antioxidant which might contribute to its sensitivity to high temperature. Thus, we define glutathione as a major antioxidant molecule acting in the adaptation of plant to rise of temperature.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3