Polarization of microbial communities between competitive and cooperative metabolism

Author:

Machado DanielORCID,Maistrenko Oleksandr M.ORCID,Andrejev SergejORCID,Kim YongkyuORCID,Bork PeerORCID,Patil Kaustubh R.ORCID,Patil Kiran R.ORCID

Abstract

AbstractResource competition and metabolic cross-feeding are among the main drivers of microbial community assembly. Yet, the degree to which these two conflicting forces are reflected in the composition of natural communities has not been systematically investigated. Here, we use genome-scale metabolic modeling to assess resource competition and metabolic cooperation potential in large co-occurring groups, with up to 40 member species, across thousands of habitats. Our analysis revealed two distinct community types, clustering at opposite ends in a trade-off landscape between competition and cooperation. On one end lie highly cooperative communities, characterized by smaller genomes and multiple auxotrophies, reminiscent of the black queen hypothesis. At the other end lie highly competitive communities, conforming to the red queen hypothesis, featuring larger genomes and overlapping nutritional requirements. While the latter are mainly present in soils, the former are found both in free-living and host-associated habitats. Community-scale flux simulations showed that, while the competitive communities can better resist species invasion but not nutrient shift, the cooperative communities are susceptible to species invasion but resilient to nutrient change. In accord, we show, through analyzing an additional independent dataset, the colonization of the human gut by probiotic species is positively associated with the presence of cooperative species in the recipient microbiome. Together, our analysis highlights the bifurcation between competition and cooperation in the assembly of natural communities and its implications for community modulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3