Glacier ice archives fifteen-thousand-year-old viruses

Author:

Zhong Zhi-PingORCID,Solonenko Natalie E.,Li Yueh-Fen,Gazitúa Maria C.,Roux Simon,Davis Mary E.,Van Etten James L.,Mosley-Thompson Ellen,Rich Virginia I.,Sullivan Matthew B.,Thompson Lonnie G.

Abstract

AbstractWhile glacier ice cores provide climate information over tens to hundreds of thousands of years, study of microbes is challenged by ultra-low-biomass conditions, and virtually nothing is known about co-occurring viruses. Here we establish ultra-clean microbial and viral sampling procedures and apply them to two ice cores from the Guliya ice cap (northwestern Tibetan Plateau, China) to study these archived communities. This method reduced intentionally contaminating bacterial, viral, and free DNA to background levels in artificial-ice-core control experiments, and was then applied to two authentic ice cores to profile their microbes and viruses. The microbes differed significantly across the two ice cores, presumably representing the very different climate conditions at the time of deposition that is similar to findings in other cores. Separately, viral particle enrichment and ultra-low-input quantitative viral metagenomic sequencing from ∼520 and ∼15,000 years old ice revealed 33 viral populations (i.e., species-level designations) that represented four known genera and likely 28 novel viral genera (assessed by gene-sharing networks). In silico host predictions linked 18 of the 33 viral populations to co-occurring abundant bacteria, including Methylobacterium, Sphingomonas, and Janthinobacterium, indicating that viruses infected several abundant microbial groups. Depth-specific viral communities were observed, presumably reflecting differences in the environmental conditions among the ice samples at the time of deposition. Together, these experiments establish a clean procedure for studying microbial and viral communities in low-biomass glacier ice and provide baseline information for glacier viruses, some of which appear to be associated with the dominant microbes in these ecosystems.ImportanceThis study establishes ultra-clean microbial and viral sampling procedures for glacier ice, which complements prior in silico decontamination methods and expands, for the first time, the clean procedures to viruses. Application of these methods to glacier ice confirmed prior common microbiological findings for a new ice core climate record, and provides a first window into viral genomes and their ecology from glacier ice across two time horizons, and emphasizes their likely impact on abundant microbial groups. Together these efforts provide clean sampling approaches and foundational datasets that should enable simultaneous access to an archived virosphere in glacier ice.

Publisher

Cold Spring Harbor Laboratory

Reference98 articles.

1. Bacteria of ice and snow in Antarctica;Nature,1919

2. Bacteria of Antarctica;J Bacteriol,1941

3. Quantitative assessment of microorganisms in microbiological studies of Antarctic glaciers;Biol Bull Acad Sci USSR,1982

4. Priscu JC , Christner BC , Foreman CM , Royston-Bishop G. 2006. Biological material in ice cores. In Elias SA (ed), Encyclopedia of quaternary science, 1st ed. Amsterdam:Elsevier.

5. Miteva V. 2008. Bacteria in snow and glacier ice, p 31–50. In Margesin R , Schinner F , Marx J-C , Gerday C (ed), Psychrophiles: from biodiversity to biotechnology. Springer Berlin Heidelberg, Berlin, Heidelberg.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3