Early detection of biomarkers for circulating tumor cells in Bone marrow and Peripheral blood in a fast-progressing gastric cancer model

Author:

Bali Prerna,Lozano-Pope Ivonne,Pachow Collin,Obonyo Marygorret

Abstract

AbstractHelicobacter pyloriposes one of the greatest risks for development of gastric cancer. We previously established a crucial role for myeloid differentiation primary response 88 (MyD88) in the regulation ofHelicobacter-induced gastric cancer. Mice deficient inMyd88rapidly progressed to neoplasia when infected withH. felis, a close relative ofH. pylori. For this study we examined circulating tumor cells (CTCs) by measuring expression of cytokeratins, epithelial to mesenchymal transition (EMT) and cancer stem cell (CSC) markers in in the bone marrow and peripheral blood of gastric cancer models we termed fast (Myd88-/-)- and slow (WT)-“progressors”. We detected cytokeratins CK8/18 as early as 3 months post infection in the fast “progressors”. In contrast, cytokeratins were not detected in slow “progressor” gastric cancer model even after 7 months post infection. Expression of MUC1 was observed in both bone marrow and peripheral blood at different time points suggesting its role in gastric cancer metastasis. Snail, Twist and ZEB were expressed at different levels in bone marrow and peripheral blood. Expression of these EMT markers suggests manifestation of cancer metastasis in the early stages of disease development. Lgr5, CD44 and CD133 were the most prominent CSC markers detected. Detection of CSC and EMT markers along with cytokeratins does reinforce their use as biomarkers for gastric cancer metastasis. This early detection of markers suggests that CTCs leave primary site even before cancer is well established. Thus, cytokeratins, EMT, and CSCs could be used as biomarkers to detect aggressive forms of gastric cancers. This information will be important in stratifying patients for treatment before the onset of severe disease characteristics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3