Protein kinase Cε activation induces EHD-dependent degradation and downregulation of KATP channels: Implications for glucose stimulated insulin secretion

Author:

Cockcroft Christopher J,Manna Paul,Karnik Rucha,Taneja Tarvinder K,Wrighton David,Mankouri Jamel,Rong Hong-Lin,Sivaprasadarao Asipu

Abstract

AbstractPancreatic β-cells have the unique ability to couple glucose metabolism to insulin secretion. This capacity is generally attributed to the ability of ATP to inhibit KATP channels, and the consequent β-cell membrane depolarization and excitation. This notion has recently been challenged by a study which demonstrated that high glucose (HG) downregulates the cell surface KATP channels, and thereby leads to β-cell depolarisation and excitation. The authors attributed the downregulation to HG-induced protein kinase C (PKC) activation and the consequent increase in channel endocytosis. This interpretation, however, is inconsistent with our previous findings that PKC activation does not affect endocytosis. To address this controversy, we revisited the problem: we have used cell biological and electrophysiological approaches combined with the pharmacological activator of PKC, PMA (phorbol 12-myristate 13-acetate). We first confirm that PKC does not play a role in KATP channel endocytosis; instead, it downregulates the channel by promoting lysosomal degradation coupled with reduced recycling. We then show that (i) mutation of the dileucine motif (355LL356) in the C-terminal domain of the Kir6.2 subunit of the KATP channel complex prevents lysosomal degradation; (ii) lysosomal targeting is mediated by the EHD (Eps15 homology domain– containing) proteins; and (iii) the PKC isoform responsible for channel degradation is PKCε. Taken together with the published data, we suggest that HG promotes β-cell excitability via two mechanisms: ATP-dependent channel inhibition and ATP-independent, PKCε-dependent channel degradation. The results likely have implications for glucose induced biphasic insulin secretion.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncurtaining the pivotal role of ABC transporters in diabetes mellitus;Environmental Science and Pollution Research;2021-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3