Efficient approximations for stationary single-channel Ca2+ nanodomains across length scales

Author:

Chen Y,Muratov C,Matveev V

Abstract

ABSTRACTWe consider the stationary solution for the Ca2+ concentration near a point Ca2+ source describing a single-channel Ca2+ nanodomain, in the presence of a single mobile Ca2+ buffer with one-to-one Ca2+ binding. We present computationally efficient approximants that estimate stationary single-channel Ca2+ nanodomains with great accuracy in broad regions of parameter space. The presented approximants have a functional form that combines rational and exponential functions, which is similar to that of the well-known Excess Buffer Approximation and the linear approximation, but with parameters estimated using two novel (to our knowledge) methods. One of the methods involves interpolation between the short-range Taylor series of the buffer concentration and its long-range asymptotic series in inverse powers of distance from the channel. Although this method has already been used to find Padé (rational-function) approximants to single-channel Ca2+ and buffer concentration, extending this method to interpolants combining exponential and rational functions improves accuracy in a significant fraction of the relevant parameter space. A second method is based on the variational approach, and involves a global minimization of an appropriate functional with respect to parameters of the chosen approximations. Extensive parameter sensitivity analysis is presented, comparing these two methods with previously developed approximants. Apart from increased accuracy, the strength of these approximants is that they can be extended to more realistic buffers with multiple binding sites characterized by cooperative Ca2+ binding, such as calmodulin and calretinin.STATEMENT OF SIGNIFICANCEMathematical and computational modeling plays an important role in the study of local Ca2+ signals underlying vesicle exocysosis, muscle contraction and other fundamental physiological processes. Closed-form approximations describing steady-state distribution of Ca2+ in the vicinity of an open Ca2+ channel have proved particularly useful for the qualitative modeling of local Ca2+ signals. We present simple and efficient approximants for the Ca2+ concentration in the presence of a mobile Ca2+ buffer, which achieve great accuracy over a wide range of model parameters. Such approximations provide an efficient method for estimating Ca2+ and buffer concentrations without resorting to numerical simulations, and allow to study the qualitative dependence of nanodomain Ca2+ distribution on the buffer’s Ca2+ binding properties and its diffusivity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3