Stationary Ca2+ nanodomains in the presence of buffers with two binding sites

Author:

Chen Y.,Matveev V.

Abstract

ABSTRACTWe examine closed-form approximations for the equilibrium Ca2+ concentration near a point Ca2+ source representing a Ca2+ channel, in the presence of a mobile Ca2+ buffer with 2:1 Ca2+ binding stoichiometry. We consider buffers with two Ca2+ binding sites activated in tandem and possessing distinct binding affinities and kinetics. This allows to model the impact on Ca2+ nanodomains of realistic endogenous Ca2+ buffers characterized by cooperative Ca2+ binding, such as calretinin. The approximations we present involve a combination or rational and exponential functions, whose parameters are constrained using the series interpolation method that we recently introduced for the case of 1:1 Ca2+ buffers. We conduct extensive parameter sensitivity analysis and show that the obtained closed-form approximations achieve reasonable qualitative accuracy for a wide range of buffer’s Ca2+ binding properties and other relevant model parameters. In particular, the accuracy of the newly derived approximants exceeds that of the rapid buffering approximation in large portions of the relevant parameter space.STATEMENT OF SIGNIFICANCEClosed-form approximations describing equilibrium distribution of Ca2+ in the vicinity of an open Ca2+ channel proved useful for the modeling of local Ca2+ signals underlying secretory vesicle exocytosis, muscle contraction and other cell processes. Such approximations provide an efficient method for estimating Ca2+ and buffer concentrations without computationally expensive numerical simulations. However, while most biological buffers have multiple Ca2+ binding sites, much of prior modeling work considered Ca2+ dynamics in the presence of Ca2+ buffers with a single Ca2+ binding site. Here we extend modeling work on equilibrium Ca2+ nanodomains to the case of Ca2+ buffers with two binding sites, allowing to gain deeper insight into the impact of more realistic Ca2+ buffers, including cooperative buffers, on cell Ca2+ dynamics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3