High-throughput microCT scanning of small specimens: preparation, packing, parameters and post-processing

Author:

Hipsley Christy A.ORCID,Aguilar Rocio,Black Jay R.,Hocknull Scott A.

Abstract

AbstractHigh-resolution X-ray microcomputed tomography, or microCT (μCT), enables the digital imaging of whole objects in three dimensions. The power of μCT to visualise internal features without disarticulation makes it particularly valuable for the study of museum collections, which house millions of physical specimens documenting the spatio-temporal patterns of life. Despite its potential for comparative analyses, most μCT studies include limited numbers of museum specimens, due to the challenges of digitising numerous individuals within a project scope. Here we describe a method for high-throughput μCT scanning of hundreds of small (< 2 cm) specimens in a single container, followed by individual labelling and archival storage. We also explore the effects of various packing materials and multiple specimens per capsule to minimize sample movement that can degrade image quality, and hence μCT investment. We demonstrate this protocol on vertebrate fossils from Queensland Museum, Australia, as part of an effort to track community responses to climate change over evolutionary time. This system can be easily modified for other types of wet and dry material amenable to X-ray attenuation, including geological, botanical and zoological samples, providing greater access to large-scale phenotypic data and adding value to global collections.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3