Complementary effects of adaptation and gain control on sound encoding in primary auditory cortex

Author:

Pennington Jacob,David Stephen

Abstract

AbstractAn important step toward understanding how the brain represents complex natural sounds is to develop accurate models of auditory coding by single neurons. A common model for auditory coding is the linear-nonlinear spectro-temporal receptive field (LN model). The LN model accounts for many features of auditory tuning, but it cannot account for long-lasting effects of sensory context on sound-evoked activity. Two mechanisms that may support these contextual effects are short-term plasticity (STP) and contrast-dependent gain control (GC), each of which has inspired an expanded version of the LN model. Both of these models improve performance over the LN model, but they have never been compared directly. Thus, it is unclear whether they account for distinct processes or describe the same phenomenon in different ways. To address this question, we recorded activity of neurons in primary auditory cortex of awake ferrets during presentation of natural sounds. We then fit models incorporating one nonlinear mechanism (GC or STP) or both (GC+STP) using this single dataset, and measured the correlation between the models’ predictions and the recorded neural activity. Both the STP and GC models performed significantly better than the LN model, but the GC+STP model performed better than either individual model. We also quantified the similarity between STP and GC model predictions and found only modest equivalence between them. Similar results were observed for a smaller dataset collected in clean and noisy acoustic contexts. These results suggest that the STP and GC models describe distinct, complementary processes in the auditory system.Significance StatementComputational models are used widely to study neural sensory coding. However, models developed in separate studies are often difficult to compare because of differences in stimuli and experimental preparation. This study develops an approach for making systematic comparisons between models that measures the net benefit of incorporating additional nonlinear elements into models of auditory encoding. This approach was then used to compare two different hypotheses for how sensory context, that is, slow changes in the statistics of the acoustic environment, influences activity in auditory cortex. Both models accounted for complementary aspects of the neural response, indicating that a hybrid model incorporating elements of both models provides the most complete characterization of auditory processing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3