Can deep learning provide a generalizable model for dynamic sound encoding in auditory cortex?

Author:

Pennington Jacob R.ORCID,David Stephen V.ORCID

Abstract

AbstractConvolutional neural networks (CNNs) can provide powerful and flexible models of neural sensory processing. However, the utility of CNNs in studying the auditory system has been limited by their requirement for large datasets and the complex response properties of single auditory neurons. To address these limitations, we developed a population encoding model: a CNN that simultaneously predicts activity of several hundred neurons recorded during presentation of a large set of natural sounds. This approach defines a shared spectro-temporal space and pools statistical power across neurons. Population models of varying architecture performed consistently better than traditional linear-nonlinear models on data from primary and non-primary auditory cortex. Moreover, population models were highly generalizable. The output layer of a model pre-trained on one population of neurons could be fit to novel single units, achieving performance equivalent to that of neurons in the original fit data. This ability to generalize suggests that population encoding models capture a general set of computations performed by auditory cortex.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3