A novel redox-active switch in Fructosamine-3-kinases expands the regulatory repertoire of the protein kinase superfamily

Author:

Shrestha SafalORCID,Katiyar Samiksha,Sanz-Rodriguez Carlos E.,Kemppinen Nolan R.,Kim Hyun W.,Kadirvelraj Renuka,Panagos Charalampos,Keyhaninejad Neda,Colonna Maxwell,Chopra Pradeep,Byrne Dominic P.,Boons Geert J.,van der Knaap Esther,Eyers Patrick A.,Edison Arthur S.,Wood Zachary A.,Kannan Natarajan

Abstract

AbstractAberrant regulation of metabolic kinases by altered redox homeostasis is a major contributing factor in aging and disease such as diabetes. However, the biochemical mechanisms by which metabolic kinases are regulated under oxidative stress is poorly understood. In this study, we demonstrate that the catalytic activity of a conserved family of Fructosamine-3-kinases (FN3Ks), which are evolutionarily related to eukaryotic protein kinases (ePKs), are regulated by redox-active cysteines in the kinase domain. By solving the crystal structure of FN3K homolog from Arabidopsis thaliana (AtFN3K), we demonstrate that it forms an unexpected strand-exchange dimer in which the ATP binding P-loop and adjoining beta strands are swapped between two chains in the dimer. This dimeric configuration is characterized by strained inter-chain disulfide bonds that stabilize the P-loop in an extended conformation. Mutational analysis and solution studies confirm that the strained disulfides function as redox “switches” to reversibly regulate FN3K activity and dimerization. Consistently, we find that human FN3K (HsFN3K), which contains an equivalent P-loop Cys, is also redox-sensitive, whereas ancestral bacterial FN3K homologs, which lack a P-loop Cys, are not. Furthermore, CRISPR knockout of FN3K in human HepG2 cells results in significant upregulation of redox metabolites including glutathione. We propose that redox regulation evolved progressively in FN3Ks in response to changing cellular redox conditions. Our studies provide important new insights into the origin and evolution of redox regulation in the protein kinase superfamily and open new avenues for targeting HsFN3K in diabetic complications.

Publisher

Cold Spring Harbor Laboratory

Reference89 articles.

1. The action of amino acids on sugar; the formation of melanoidin by a methodic route;Comptes Ren-dus Hebdomadaires Des Seances De L Academie Des Sciences,1912

2. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins

3. The Amadori Rearrangement

4. Reaction of Monosaccharides with Proteins: Possible Evolutionary Significance

5. The Amadori product on protein: structure and reactions;Prog Clin Biol Res,1989

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3