An evolutionary-conserved redox regulatory mechanism in human Ser/Thr protein kinases

Author:

Byrne Dominic P.,Shrestha Safal,Kannan Natarajan,Eyers Patrick A.ORCID

Abstract

ABSTRACTReactive oxygen species (ROS) are products of oxygen metabolism, but are also recognized as endogenous physiological mediators of cellular signaling. Eukaryotic protein kinase (ePK) regulation occurs through reversible phosphorylation events in the flexible activation segment. In this study, we demonstrate that the catalytic phosphotransferase output from the mitotic Ser/Thr kinase Aurora A is also controlled by cysteine (Cys) oxidation. Reversible regulation occurs by direct modification of a conserved residue (Cys 290), which lies adjacent to Thr 288, the activating site of phosphorylation. Strikingly, redox modulation of the Cys 290-equivalent in other ePKs is predicted to be an underappreciated regulatory mechanism, since ~100 human Ser/Thr kinases possess a Cys at this position in the conserved activation loop. Using real-time enzyme assays, we confirm that the presence of the equivalent Cys residue is prognostic for redox-sensitivity amongst a cohort of human CAMK, AGC and AGC-like kinases, including AKT, AMPK, CAMK1, MAPKAP-K2/3 and SIK1-3. Our findings demonstrate that dominant Cys-based redox-switching in the activation segment represents an evolutionary-conserved mode of regulation for a significant subset of the human kinome. This finding has important implications for understanding physiological and pathological signaling responses to ROS, and emphasises the importance of multivalent activation segment regulation in ePKs.ONE-SENTENCE SUMMARYThe catalytic activity of Ser/Thr kinases is regulated through a conserved Cys-based redox mechanism.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3