Abstract
AbstractTumors are supported by cancer-associated fibroblasts (CAFs). CAFs are heterogeneous and carry out distinct cancer-associated functions. Understanding the full repertoire of CAFs and their dynamic changes could improve the precision of cancer treatment. CAFs are usually analyzed at a single time-point using specific markers, and it is therefore unclear whether CAFs display plasticity as tumors evolve. Here, we analyze thousands of CAFs using index and transcriptional single-cell sorting, at several time-points along breast tumor progression in mice, uncovering distinct subpopulations. Strikingly, the transcriptional programs of these subpopulations change over time and in metastases, transitioning from an immune-regulatory program to wound healing and antigen-presentation programs, indicating that CAFs and their functions are dynamic. Two main CAF subpopulations are also found in human breast tumors, where their ratio is associated with disease outcome across subtypes, and is particularly correlated with BRCA mutations in triple-negative breast cancer. These findings indicate that the repertoire of CAFs changes over time in breast cancer progression, with direct clinical implications.
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献