Molecular diet analysis in zebra and quagga mussels (Dreissena spp.) and an assessment of the utility of aquatic filter feeders as biological eDNA filters

Author:

Weber SvenORCID,Brink Lukas,Wörner Manuel,Künzel Sven,Veith Michael,Teubner Diana,Klein Roland,Paulus Martin,Krehenwinkel HenrikORCID

Abstract

AbstractMolecular gut content analysis is a popular tool to study food web interactions and was recently also suggested as an alternative source for DNA based biomonitoring. However, the overabundant consumer’s DNA often outcompetes that of its diet during PCR. Blocking approaches are an efficient means to reduce consumer amplification while retaining broad specificity for dietary taxa. We here designed an assay to monitor the eukaryotic diet of mussels and test their utility as biological eDNA filters to monitor planktonic communities. We designed several rDNA primer sets with a broad taxonomic suitability for eukaryotes, which suppress the amplification of mussels. The primers were tested using mussel DNA extracts and the results were compared to eDNA water samples collected next to the mussel colonies. Taxonomic recovery, as well as patterns of alpha and beta diversity, were compared between mussels and water samples. In addition, we analyzed time series samples of mussel samples from different German rivers. Our primer sets efficiently block the amplification of various mussel genera. The recovered DNA reflects a broad dietary preference across the eukaryotic tree of life and considerable taxonomic overlap with filtered water samples. We also recover various taxa of possible commensals and parasites, associated with the mussels. Our protocol will enable large scale dietary analysis in mussels, facilitate aquatic food web analysis, elucidate the ecological impact of invasive bivalves and the rapid survey of mussel aquacultures for pathogens. Moreover, we show that mussels could serve as an interesting complementary DNA source for biomonitoring.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3