Long-term archival of environmental samples empowers biodiversity monitoring and ecological research

Author:

Zizka Vera M. A.ORCID,Koschorreck Jan,Khan Collins C.,Astrin Jonas J.

Abstract

AbstractHuman-induced biodiversity loss and changes in community composition are major challenges of the present time, urgently calling for comprehensive biomonitoring approaches to understand system dynamics and to inform policy-making. In this regard, molecular methods are increasingly applied. They provide tools for fast and high-resolution biodiversity assessments and can also focus on population dynamics or functional diversity. If samples are stored under appropriate conditions, this will enable the analysis of DNA, but also RNA and proteins from tissue or from non-biological substrates such as soil, water, or sediments, so-called environmental DNA (eDNA) or eRNA. Until now, most biodiversity studies using molecular methods rely on recent sampling events, although the benefit of analyzing long-time series is obvious. In this context Environmental Specimen Banks (ESBs) can play a crucial role, supplying diverse and well-documented samples collected in periodically repeated sampling events, and following standardized protocols. Mainly assembled for integrative monitoring of chemical compounds, ESB collections are largely accessible to third parties and can in principle be used for molecular analysis. While ESBs hold great potential for the standardized long-time storage of environmental samples, the cooperation with Biodiversity Biobanks as scientific collections guarantees the long-time storage of nucleotide (DNA, RNA) extracts together with links to analytical results and metadata. The present contribution aims to raise the awareness of the biodiversity research community regarding the high-quality samples accessible through ESBs, encourages ESBs to collect and store samples in DNA-friendly ways, and points out the high potential of combining DNA-based approaches with monitoring chemicals and other environmental stressors.

Funder

Leibniz-Institut für Biodiversität der Tiere

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3